Skip to main content
Version: 1.1.0

Flink Quick Start

This page introduces Flink–Hudi integration and demonstrates how Flink brings the power of streaming to Hudi.

Setup

HudiSupported Flink versions
1.1.x1.17.x, 1.18.x, 1.19.x, 1.20.x (default build), 2.0.x
1.0.x1.14.x, 1.15.x, 1.16.x, 1.17.x, 1.18.x, 1.19.x, 1.20.x (default build)
0.15.x1.14.x, 1.15.x, 1.16.x, 1.17.x, 1.18.x
0.14.x1.13.x, 1.14.x, 1.15.x, 1.16.x, 1.17.x
  • You can follow the instructions here for setting up Flink
  • Then start a standalone Flink cluster within a Hadoop environment

For local setup, you can download Hadoop binaries and set HADOOP_HOME as follows:

# HADOOP_HOME is your hadoop root directory after unpack the binary package.
export HADOOP_CLASSPATH=`$HADOOP_HOME/bin/hadoop classpath`

# Start the Flink standalone cluster
./bin/start-cluster.sh

Please note the following:

  • We recommend Hadoop 2.9.x+ because some object storage systems have filesystem implementations only from that version onward
  • The flink-parquet and flink-avro formats are already packaged into the hudi-flink-bundle jar

We use the Flink SQL Client because it's a good quick-start tool for SQL users.

Hudi supports a packaged bundle jar for Flink, which should be loaded in the Flink SQL Client when it starts up. You can build the jar manually under path hudi-source-dir/packaging/hudi-flink-bundle(see Build Flink Bundle Jar), or download it from the Apache Official Repository.

Now start the SQL CLI:

# For Flink versions: 1.17-1.20, 2.0
export FLINK_VERSION=1.20
export HUDI_VERSION=1.1.0
wget https://repo1.maven.org/maven2/org/apache/hudi/hudi-flink${FLINK_VERSION}-bundle/${HUDI_VERSION}/hudi-flink${FLINK_VERSION}-bundle-${HUDI_VERSION}.jar -P /tmp/
./bin/sql-client.sh embedded -j /tmp/hudi-flink${FLINK_VERSION}-bundle-${HUDI_VERSION}.jar shell

Setup table name, base path and operate using SQL for this guide. The SQL CLI only executes the SQL line by line.

Create Table

First, let's create a Hudi table. Here, we use a partitioned table for illustration, but Hudi also supports non-partitioned tables.

Here is an example of creating a Flink Hudi table.

-- sets up the result mode to tableau to show the results directly in the CLI
set sql-client.execution.result-mode = tableau;
DROP TABLE hudi_table;
CREATE TABLE hudi_table(
ts BIGINT,
uuid VARCHAR(40) PRIMARY KEY NOT ENFORCED,
rider VARCHAR(20),
driver VARCHAR(20),
fare DOUBLE,
city VARCHAR(20)
)
PARTITIONED BY (`city`)
WITH (
'connector' = 'hudi',
'path' = 'file:///tmp/hudi_table',
'table.type' = 'MERGE_ON_READ'
);

Insert Data

Insert data into the Hudi table using SQL VALUES.

-- insert data using values
INSERT INTO hudi_table
VALUES
(1695159649087,'334e26e9-8355-45cc-97c6-c31daf0df330','rider-A','driver-K',19.10,'san_francisco'),
(1695091554788,'e96c4396-3fad-413a-a942-4cb36106d721','rider-C','driver-M',27.70 ,'san_francisco'),
(1695046462179,'9909a8b1-2d15-4d3d-8ec9-efc48c536a00','rider-D','driver-L',33.90 ,'san_francisco'),
(1695332066204,'1dced545-862b-4ceb-8b43-d2a568f6616b','rider-E','driver-O',93.50,'san_francisco'),
(1695516137016,'e3cf430c-889d-4015-bc98-59bdce1e530c','rider-F','driver-P',34.15,'sao_paulo'),
(1695376420876,'7a84095f-737f-40bc-b62f-6b69664712d2','rider-G','driver-Q',43.40 ,'sao_paulo'),
(1695173887231,'3eeb61f7-c2b0-4636-99bd-5d7a5a1d2c04','rider-I','driver-S',41.06 ,'chennai'),
(1695115999911,'c8abbe79-8d89-47ea-b4ce-4d224bae5bfa','rider-J','driver-T',17.85,'chennai');

Query Data

-- query from the Hudi table
select * from hudi_table;

This statement queries snapshot view of the dataset. Refers to Table types and queries for more info on all table types and query types supported.

Update Data

This is similar to inserting new data.

Hudi tables can be updated by either inserting records with the same record key or using a standard UPDATE statement as shown below.

-- Update Queries only works with batch execution mode
SET 'execution.runtime-mode' = 'batch';
UPDATE hudi_table SET fare = 25.0 WHERE uuid = '334e26e9-8355-45cc-97c6-c31daf0df330';
note

The UPDATE statement is supported since Flink 1.17, so only Hudi Flink bundle compiled with Flink 1.17+ supplies this functionality. Only batch queries on Hudi table with record key work correctly.

Querying the data again will now show updated records. Each write operation generates a new commit denoted by the timestamp.

Delete Data

Row‑Level Delete

When consuming data in a streaming query, the Hudi Flink source can also accept change logs from the upstream data source if the RowKind is set up per row; it can then apply UPDATE and DELETE at the row level. You can then sync a near‑real‑time snapshot on Hudi for all kinds of RDBMS.

Batch Delete

-- delete all the records with age greater than 23
-- NOTE: only works for batch sql queries
SET 'execution.runtime-mode' = 'batch';
DELETE FROM t1 WHERE age > 23;
note

The DELETE statement is supported since Flink 1.17, so only Hudi Flink bundle compiled with Flink 1.17+ supplies this functionality. Only batch queries on Hudi table with record key work correctly.

Streaming Query

Hudi Flink also provides the capability to obtain a stream of records that changed since a given commit timestamp. This can be achieved using Hudi's streaming querying and providing a start time from which changes need to be streamed. We do not need to specify endTime, if we want all changes after the given commit (as is the common case).

CREATE TABLE t1(
uuid VARCHAR(20) PRIMARY KEY NOT ENFORCED,
name VARCHAR(10),
age INT,
ts TIMESTAMP(3),
`partition` VARCHAR(20)
)
PARTITIONED BY (`partition`)
WITH (
'connector' = 'hudi',
'path' = '${path}',
'table.type' = 'MERGE_ON_READ',
'read.streaming.enabled' = 'true', -- this option enable the streaming read
'read.start-commit' = '20210316134557', -- specifies the start commit instant time
'read.streaming.check-interval' = '4' -- specifies the check interval for finding new source commits; default is 60s.
);

-- Then query the table in stream mode
select * from t1;

Change Data Capture Query

Hudi Flink also provides the capability to obtain a stream of records with Change Data Capture. CDC queries are useful for applications that need to obtain all changes, along with before/after images of records.

set sql-client.execution.result-mode = tableau;

CREATE TABLE hudi_table(
ts BIGINT,
uuid VARCHAR(40) PRIMARY KEY NOT ENFORCED,
rider VARCHAR(20),
driver VARCHAR(20),
fare DOUBLE,
city VARCHAR(20)
)
PARTITIONED BY (`city`)
WITH (
'connector' = 'hudi',
'path' = 'file:///tmp/hudi_table',
'table.type' = 'COPY_ON_WRITE',
'cdc.enabled' = 'true' -- this option enables CDC logging
);
-- insert data using values
INSERT INTO hudi_table
VALUES
(1695159649087,'334e26e9-8355-45cc-97c6-c31daf0df330','rider-A','driver-K',19.10,'san_francisco'),
(1695091554788,'e96c4396-3fad-413a-a942-4cb36106d721','rider-C','driver-M',27.70 ,'san_francisco'),
(1695046462179,'9909a8b1-2d15-4d3d-8ec9-efc48c536a00','rider-D','driver-L',33.90 ,'san_francisco'),
(1695332066204,'1dced545-862b-4ceb-8b43-d2a568f6616b','rider-E','driver-O',93.50,'san_francisco'),
(1695516137016,'e3cf430c-889d-4015-bc98-59bdce1e530c','rider-F','driver-P',34.15,'sao_paulo'),
(1695376420876,'7a84095f-737f-40bc-b62f-6b69664712d2','rider-G','driver-Q',43.40 ,'sao_paulo'),
(1695173887231,'3eeb61f7-c2b0-4636-99bd-5d7a5a1d2c04','rider-I','driver-S',41.06 ,'chennai'),
(1695115999911,'c8abbe79-8d89-47ea-b4ce-4d224bae5bfa','rider-J','driver-T',17.85,'chennai');
SET 'execution.runtime-mode' = 'batch';
UPDATE hudi_table SET fare = 25.0 WHERE uuid = '334e26e9-8355-45cc-97c6-c31daf0df330';
-- Query the table in stream mode in another shell to see change logs
SET 'execution.runtime-mode' = 'streaming';
select * from hudi_table/*+ OPTIONS('read.streaming.enabled'='true')*/;

This will give all changes that happened after the read.start-commit commit. The unique thing about this feature is that it lets you author streaming pipelines on streaming or batch data sources.

Where To Go From Here?

If you are relatively new to Apache Hudi, it is important to be familiar with a few core concepts:

See more in the concepts docs page.

Take a look at recent blog posts that go in depth on certain topics or use cases.

Hudi tables can be queried from query engines like Hive, Spark, Flink, Presto, and much more. We have put together a demo video that showcases all of this on a Docker‑based setup with all dependent systems running locally. We recommend you replicate the same setup and run the demo yourself by following the steps in the docker demo to get a taste for it. Also, if you are looking for ways to migrate your existing data to Hudi, refer to the migration guide.