Skip to main content
Version: Next

DataHub

DataHub is a rich metadata platform that supports features like data discovery, data obeservability, federated governance, etc.

Since Hudi 0.11.0, you can now sync to a DataHub instance by setting DataHubSyncTool as one of the sync tool classes for HoodieStreamer.

The target Hudi table will be sync'ed to DataHub as a Dataset, which will be created with the following properties:

  • Hudi table properties and partitioning information
  • Spark-related properties
  • User-defined properties
  • The last commit and the last commit completion timestamps

Additionally, the Dataset object will include the following metadata:

  • sub-type as Table
  • browse path
  • parent container
  • Avro schema
  • optionally, attached with a Domain object

Also, the parent database will be sync'ed to DataHub as a Container, including the following metadata:

  • sub-type as Database
  • browse paths
  • optionally, attached with a Domain object

Configurations

DataHubSyncTool makes use of DataHub's Java Emitter to send the metadata via HTTP REST APIs. It is required to set hoodie.meta.sync.datahub.emitter.server to the URL of the DataHub instance for sync.

If needs auth token, set hoodie.meta.sync.datahub.emitter.token.

If needs customized creation of the emitter object, implement org.apache.hudi.sync.datahub.config.DataHubEmitterSupplier and supply the implementation's FQCN to hoodie.meta.sync.datahub.emitter.supplier.class.

By default, the sync config's database name and table name will be used to make the target Dataset's URN. Subclass HoodieDataHubDatasetIdentifier and set it to hoodie.meta.sync.datahub.dataset.identifier.class to customize the URN creation.

Optionally, sync'ed Dataset and Container objects can be attached with a Domain object. To do this, set hoodie.meta.sync.datahub.domain.name to a valid Domain URN. Also, sync'ed Dataset can be attached with user defined properties. To do this, set hoodie.meta.sync.datahub.table.properties to a comma-separated key-value string (eg key1=val1,key2=val2).

Example

The following shows an example configuration to run HoodieStreamer with DataHubSyncTool.

In addition to hudi-utilities-slim-bundle that contains HoodieStreamer, you also add hudi-datahub-sync-bundle to the classpath.

spark-submit --master yarn \
--packages org.apache.hudi:hudi-utilities-slim-bundle_2.12:1.0.0,org.apache.hudi:hudi-spark3.5-bundle_2.12:1.0.0 \
--jars /opt/hudi-datahub-sync-bundle-1.0.0.jar \
--class org.apache.hudi.utilities.streamer.HoodieStreamer \
/opt/hudi-utilities-slim-bundle_2.12-1.0.0.jar \
--target-table mytable \
# ... other HoodieStreamer's configs
--enable-sync \
--sync-tool-classes org.apache.hudi.sync.datahub.DataHubSyncTool \
--hoodie-conf hoodie.meta.sync.datahub.emitter.server=http://url-to-datahub-instance:8080 \
--hoodie-conf hoodie.datasource.hive_sync.database=mydb \
--hoodie-conf hoodie.datasource.hive_sync.table=mytable \